Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Progress Report
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search

Improving Meningococcal Vaccines

February 16, 2016

Two recently licensed vaccines against bacterial meningitis contain a bacterial surface protein antigen known as Factor H binding protein (FHbp). The native form of this protein can have low thermal stability, which limits its potential use as an antigen in vaccines. After engineering a more stable Factor H binding protein antigen, scientists from UC San Francisco Benioff Children’s Hospital Oakland determined the structure of the stabilized vaccine with the help of protein crystallography at the Advanced Light Source (ALS) in the Berkeley Center for Structural Biology (Beamline 5.0.1). Read more in the ALS Science Brief.

CRISPR/Cas9: Ready for Action

February 5, 2016

The CRISPR/Cas9 bacterial genomic editing system identifies and cleaves complementary target sequences in foreign DNA. CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) protein Cas9 begins its work by RNA-guided DNA unwinding to form an RNA-DNA hybrid and displacing a DNA strand inside the protein. Upon binding, Cas9 reorganizes into an R-loop complex that is necessary for it to perform its function. A recent article published in Science describes work done to uncover the structural basis of Cas9’s function.

A Key Step Toward Custom-Made Nanoscale Chemical Factories

February 4, 2016

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. The new design provides an entirely new functionality that greatly expands the potential for these compartments to serve as custom-made chemical factories. The work was led by Cheryl Kerfeld, who holds joint appointments with Berkeley Lab’s Kerfeld_JACS_216-628x416Molecular Biophysics and Integrated Bioimaging Division, UC Berkeley and the MSU-DOE Plant Research Laboratory at Michigan State University. Markus Sutter, a senior research associate in Kerfeld’s group at Berkeley Lab, collected the X-ray diffraction data used in this study in the Berkeley Center for Structural Biology at the Advanced Light Source. Read more at the Berkeley Lab News Center.

A New Pathway for Radionuclide Uptake

January 21, 2016

Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide uptake into cells is instrumental in managing human contamination. Recently, scientists have reported that an iron-binding protein called siderocalin can also bind and transport actinides into cells, a major advance in understanding the biological chemistry of radioactive metals. The research, which included X-ray crystallographic studies in the Berkeley Center for Structural Biology (Beamlines 5.0.1 and 5.0.2) at the Advanced Light Source (ALS), opens up new avenues of research into strategies for remedial action in the event of possible human exposure to nuclear contaminants. In addition, siderocalin, the protein studied, was selected as “Molecule of the Month” by the Protein Data Bank’s educational portal. Read more in the ALS Science Highlight.

Nature’s Microscopic Masonry: The First Steps in How Thin Protein Sheets Form Polyhedral Shells

December 22, 2015

Scientists for the first time have viewed how bacterial proteins self-assemble into thin sheets and begin to form the walls of the outer shell for nano-sized polyhedral compartments that function as specialized factories. Researchers in the Molecular Biophysics & Integrated Bioimaging Division determined the 3-D structure of the basic building block protein from crystallized samples in the Berkeley Center for Structural Biology at the Advanced Light Source. Their findings may eventually help improve drug delivery systems. Read more in the Berkeley Lab News Center.

  • « Previous Page
  • 1
  • …
  • 9
  • 10
  • 11
  • 12
  • Next Page »

Was this page useful?

Send
like not like

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon Twitter LinkedIn YouTube