A team of scientists, including many in the Molecular Biophysics and Integrated Bioimaging Division, uncovered new details about the reaction that powers photosynthesis. Understanding this reaction could lead to world-changing advances in technology, medicine, or energy––and also gives insight into how the enzyme photosystem II produces the oxygen we breathe. Their latest work was recently published in Nature Communications and two of the authors, Vittal Yachandra and Philipp Simon, spoke with Strategic Communications about that, shooting stuff with lasers, and why they chose this field of research.
New Technique Gets the Drop On Enzyme Reactions
As part of an international collaboration, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab), the Diamond Light Source synchrotron facility, and Oxford and Bristol Universities in England have developed a novel sample delivery system that expands the limited toolkit for performing dynamic structural biology studies of enzyme catalysis, which have so far mostly been limited to a small number of light-driven enzymes.
Enzyme Action Movie Shows How Nature Makes Penicillins
Scientists who specialize in studying the atom-by-atom choreography of enzymes have revealed new insights into the function of isopenicillin N synthase, an enzyme needed to produce some of the world’s most critical antibiotics.
New Refinement Technique Promises Greater Protein Structure Accuracy
X-ray free-electron lasers (XFELs) came into use in 2010 for protein crystallography, allowing scientists to study fully hydrated specimens at room temperature without radiation damage. Researchers have developed many new experimental and computational techniques to optimize the technology and draw the most accurate picture of proteins from crystals. Now scientists in the Molecular Biophysics and Integrated Bioimaging (MBIB) Division have developed a new program, diffBragg, which can process every pixel collected from an XFEL for a protein structure independently. In a recent IUCrJ paper, the team led by MBIB Senior Scientist Nicholas Sauter proposed a new processing framework for more accurate determination of protein structures.
How to Reduce Greenhouse Gas? Tips from a Methane-Eating Microbe
Scientists have determined the structure of a unique enzyme, produced by a species of methane-eating bacteria, that converts the greenhouse gas into methanol – a highly versatile liquid fuel and industrial product ingredient.
Their new study, published in the Journal of the American Chemical Society, is the first to report the structure of the enzyme, called soluble methane monooxygenase (sMMO), at room temperature in both its reduced and oxidized forms. This detailed structural information will help researchers design efficient catalysts for industrial methane to methanol conversion processes.
Was this page useful?

