Generating and analyzing data associated with scientific research can be challenging and complicated, to say the least. But the importance of sharing and giving credit to those who produced the data is foundational to furthering the impact of the work. Learn more about ten simple rules for getting and giving credit for data.
Small-scale Changes in Environment Can Have Large Effects on Microbial Communities
A Berkeley Lab team analyzed the genotypes and phenotypes of several Arthrobacter strains to correlate cellular functions to their location at varying depths within a single sediment core and in nearby groundwater. They found that Arthrobacter, as a genus, has remarkable flexibility in altering its suites of carbon degradation genes. This genomic variation was found to be linked to the individual strain’s environment and is the basis for Arthrobacter’s ability to break down a wide variety of complex carbon sources.
All-star Scientific Team Seeks to Edit Entire Microbiomes with CRISPR
CRISPR enzymes are like super scissors: they cut, delete, and add genes to a specific kind of cell, one at a time. But now, UC Berkeley faculty and Biosciences Area researchers have figured out how to add or modify genes within a microbial community of many different species, coining the phrase, “community editing.”
Project Jupyter: Computer Code that Transformed Science
Computer code co-developed by a scientist from Lawrence Berkeley National Laboratory (Berkeley Lab) and embraced by the global science community over two decades has been hailed by Nature as one of “ten computer codes that transformed science.”
New Protein Functions from Beneficial Human Gut Bacterium
Researchers in the Environmental Genomics and Systems Biology (EGSB) and Biological Systems and Engineering (BSE) Divisions at Berkeley Lab employed a large-scale functional genomics approach to systematically characterize Bacteroides thetaiotaomicron, a beneficial bacterium prevalent in the human gut. They performed hundreds of genome-wide fitness assays and identified new functions for 40 proteins, including antibiotic tolerance, polysaccharide degradation, and colonization of the GI tract in germ-free mice.
- 1
- 2
- 3
- 4
- Next Page »
Was this page useful?

