Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Progress Report
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search

Machine Learning Takes on Synthetic Biology: Algorithms Can Bioengineer Cells for You

September 25, 2020

Engineering biological systems to specification–for example, designing a microbe to produce a cancer-fighting agent–requires a detailed mechanistic understanding of how all the parts of a cell work. Typically, this knowledge is acquired through years of painstaking work and a fair amount of trial and error. But Berkeley Lab scientists have created an Automated Recommendation Tool (ART) that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically. With a limited set of training data, the algorithms are able to predict how changes in a cell’s DNA or biochemistry will affect its behavior, then make recommendations for the next engineering cycle along with probabilistic predictions for attaining the desired goal. The work was led by Hector Garcia Martin, a researcher in Berkeley Lab’s Biological Systems and Engineering (BSE) Division and Tijana Radivojevic, a BSE data scientist. In a pair of papers recently published in the journal Nature Communications, they presented the algorithm and demonstrated its capabilities.

Read more in the Berkeley Lab News Center.

More Investment Needed for Machine Learning for Bioengineering

July 22, 2019

Machine Learning.In an opinion piece published July 19 in ACS Synthetic Biology, Hector Garcia Martin and Tijana Radivojevic of the Biosciences Area’s Biological Systems & Engineering Division collaborated with Pablo Carbonell of the Manchester Institute of Biotechnology’s SynBioChem Centre, to highlight the opportunities in a radical new approach to bioengineering that leverages the latest disruptive advances in machine learning.

Was this page useful?

Send
like not like

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon Twitter LinkedIn YouTube