Eric Sundstrom, a research scientist at Berkeley Lab, talks about a technology to turn electrons into bioproducts.
Many of the common items we use in our everyday lives – from building materials to plastics to pharmaceuticals – are manufactured from fossil fuels. To reduce our reliance on fossil fuels and reduce greenhouse gas emissions, society has increasingly tried turning to plants to make the everyday products we need. For example, corn can be turned into corn ethanol and plastics, lignocellulosic sugars can be turned into sustainable aviation fuels, and paints can be made from soy oil.
But what if plants could be removed from the picture, eliminating the need for water, fertilizer, and land? What if microbes could instead be harnessed to make fuels and other products? And what if these microbes could grow on carbon dioxide, thus simultaneously producing valuable goods while also removing a greenhouse gas from the atmosphere, all in one reactor? Too good to be true?
Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have made good progress in turning this technology into reality. Led by scientist Eric Sundstrom, a research scientist at the Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), and postdoctoral scholar Changman Kim, the project combines biology and electrochemistry to produce complex molecules, all powered by renewable energy. With carbon dioxide as one of the inputs, the system has potential to remove heat-trapping gases from the atmosphere, or in other words, a negative emissions technology (NET).