Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Reports
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search

Scientists Hit Pay Dirt with New Microbial Research Technique

June 24, 2019

Charles Paradis, now a post-doctoral researcher at Los Alamos National Laboratory, holds a soil core sample taken from the Oak Ridge Field Research Site in Tennessee. The BONCAT+FACS optimization testing reported in the current study used samples such as this one. (Credit: Lance E. King/Y-12 National Security Complex)
Charles Paradis, now a post-doctoral researcher at Los Alamos National Laboratory, holds a soil core sample taken from the Oak Ridge Field Research Site in Tennessee. The BONCAT+FACS optimization testing reported in the current study used samples such as this one. (Credit: Lance E. King/Y-12 National Security Complex)

In a Nature Communications report, a team of Berkeley Lab Biosciences Area scientists detail the first-ever successful use of a technique called BONCAT to isolate active microbes present in a sample of soil. Working within a Berkeley Lab-led scientific focus area called ENIGMA (for Ecosystems and Networks Integrated with Genes and Molecular Assemblies), Trent Northen’s lab in the Environmental Genomics and Systems Biology (EGSB) division teamed with JGI researchers on the work.

“Soils are probably the most diverse microbial communities on the planet,” said Estelle Couradeau, first author of the study. “In every gram of soil, there are billions of cells from tens of thousands of species that, all together, perform important Earth nutrient cycles. They are the backbone of terrestrial ecosystems, and healthy soil microbiomes are key to sustainable agriculture. We now have the tools to see who these species are, but we don’t yet know how they do what they do. This proof-of-concept study shows that BONCAT is an effective tool that we could use to link active microbes to environmental processes.” Read more on the Berkeley Lab News Center.

Was this page useful?

Send
like not like

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon LinkedIn YouTube