Researchers in the Berkeley Synchrotron Infrared Structural Biology (BSISB) Imaging Program developed a technique that combines a novel microfluidic device and infrared spectroscopy to study how a cellulose-degrading enzyme works in real time.
Whip It: Novel Liquid Jet Makes Droplets March to the Beat
An interdisciplinary team has developed a first-of-its-kind, steady-state whipping liquid microjet that produces droplets of uniform size and spacing in a two-dimensional profile. The technology could ultimately lead to advancements in structural biology, climate science, and several industries.
Exploring Microbes in Arctic Soils
Neslihan Taş, a research scientist with the Earth and Environmental Sciences Area who is affiliated with the Environmental Genomics and Systems Biology Division, is studying how microbial processes shift as arctic permafrost melts. She’s working with the BSISB team to leverage infrared tools to reveal new patterns in biogeochemical cycles.
Automating Scientific Discoveries
As instruments in large-scale user facilities are becoming more powerful, the volume of data and its complexity also grow. To leverage these heightened capabilities and accelerate scientific discoveries, a field known as autonomous discovery has emerged. It uses algorithms to learn from a comparatively little amount of input data and determine the best next experimental steps — all with minimal human intervention.
To Speed Discovery, Infrared Microscopy Goes ‘Off the Grid’
Researchers from Berkeley Lab, UC Berkeley, and Caltech devised a more efficient way to collect “high-dimensional” infrared images, where each pixel contains rich physical and chemical information. The new technique, implemented at the Advanced Light Source’s (ALS) infrared beamline 1.4, uses a grid-less, adaptive approach that autonomously increases sampling in areas displaying greater physical or chemical contrast. With the new method, scans that would’ve taken up to 10 hours to complete can now be done in under an hour.
Was this page useful?