Researchers have leveraged machine learning to create proteins that toggle between two different shapes in response to biological triggers, overcoming a limiting challenge in computational protein design and broadening the potential functionality of designed proteins. Study co-author Banumathi Sankaran, a research scientist in the Molecular Biophysics and Bioimaging Division, used the Advanced Light Source (ALS) beamlines in the Berkeley Center for Structural Biology (BCSB) to validate results with X-ray crystallography data.
Gemini Beamline Banks First Protein Structure
A protein structure obtained at Beamline 2.0.1 (“Gemini”) at the Advanced Light Source (ALS) has recently been published in the literature and deposited into the Protein Data Bank—two significant firsts for this beamline. The structure helped provide new insights into the molecular mechanisms involved in triggering certain inflammatory diseases. This milestone, which utilized Gemini’s capacity to target crystals smaller than 20 microns, was almost a decade in the making. Simon Morton, now a semi-retired staff scientist at ALS, and Corie Ralston, facility director at the Molecular Foundry and a staff scientist in the Molecular Biophysics and Integrated Bioimaging Division (MBIB), helped bring the microfocus beamline to the Berkeley Center for Structural Biology (BCSB) in 2014. Beamline operations are now led by Marc Allaire, a biophysicist staff scientist in MBIB and head of the BCSB.
Read More in the Berkeley Lab News Center.
An Old Tube Holds Key To 30 Year Protein Structure Mystery
After decades of failed attempts, scientists have solved the structure of a protein domain at the center of several major diseases using Berkeley Center for Structural Biology’s beamline 5.0.2.
Enzyme Structure Reveals Key Details in Strigolactone Signaling
A recent study published in Nature Plants used a combination of genetic mutation and X-ray crystallography, conducted at the Berkeley Center for Structural Biology, to reveal structural details of a key enzyme involved in plant signaling.
Enzyme Structure Reveals How a Powerful Anti-cancer Molecule Is Made
Researchers at the Scripps Institution of Oceanography in San Diego used the Berkeley Center for Structural Biology’s 8.2.2 beamline at the Advanced Light Source to identify structural details of an enzyme that produces a versatile anti-cancer molecule. By virtue of the its unique, ringed structure the molecule crosses the blood-brain barrier and could be instrumental in fighting difficult-to-access brain cancers.
- 1
- 2
- 3
- …
- 9
- Next Page »
Was this page useful?