Antoine M. Snijders
Affiliate Senior Scientist
Biological Systems and Engineering
- Organismal Systems & Bioresilience
Building: 977, Room 234
Mail Stop: 977
Phone: (510) 486-7235
AMSnijders@lbl.gov
Research Interests
My research goals are to understand cancer tumorigenesis specifically addressing key questions concerning the contribution of host genetics, environmental exposures and their interactions in cancer risk and tumor progression. My laboratory uses a systems biology approach, together with novel mouse models to identify genetic networks controlling susceptibility to cancer risk. Precision medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in environment, lifestyle and genes for each person. Genetic susceptibility is a major component that contributes to the variability in disease susceptibility. Thus, identifying the genes involved in susceptibility to cancer may have potential utility in developing novel personalized medicines, lead to greater understanding of the biological pathways involved in cancer development, and elucidate how environmental factors exert their effects in combination with genetic variants. The broad and long-term goals of my laboratory are to identify how the interactions of combinations of genes and their functional polymorphisms and environmental exposures (including for example thirdhand smoke) contribute to disease susceptibility of individual human subjects. Major problems in assessing human cancer risk are that humans are genetically heterogeneous and exposures are pervasive and difficult to quantitate. Parallel exposures to multiple chemicals and lifestyle factors that can negatively impact health further confound efforts to assess risk. Population based mouse models offer many advantages for the study of the genetic basis of complex traits, including cancer, because of our ability to control both the genetic and environmental components of risk. My lab exploits the power of mouse genetics using Collaborative Cross (CC) mice, together with OMICS analyses to determine the influence of individual variations in disease susceptibility. This comprehensive systems biology approach will likely identify specific genes or pathways that are differentially controlled between mouse strains, and contribute to human variation in susceptibility to environment factor-induced carcinogenesis.
To learn more about thirdhand smoke, visit the Thirdhand Smoke Resource Center (www.thirdhandsmoke.org).