When it comes to powering aircraft, jet engines need dense, energy-packed fuels. Right now, nearly all of that fuel comes from petroleum, as batteries don’t yet deliver enough punch for most flights. Scientists have long dreamed of a synthetic alternative: teaching microbes to ferment plant material into high-performance jet fuels. But designing these microbial “mini-factories” has traditionally been slow and expensive because of the unpredictability of biological systems.

In a pair of recent studies, two teams at the Joint BioEnergy Institute (JBEI), which is managed by Lawrence Berkeley National Laboratory (Berkeley Lab), have demonstrated complementary ways to dramatically speed up this process. One combines artificial intelligence and lab automation to rapidly test and refine the genetic designs of biofuel-producing microbes. The other turns a microbe’s “bad habit” into a powerful sensing tool, uncovering hidden pathways that boost production.

Their shared target is isoprenol — a clear, volatile alcohol that can be converted into DMCO, a next-generation jet fuel with higher energy density than today’s conventional aviation fuels. Producing isoprenol efficiently has been a long-standing challenge in synthetic biology.

The two studies — one published in Nature Communications, the other in Science Advances — tackle different sides of this challenge. The first uses automation and machine learning to engineer Pseudomonas putida strains that produce five times more isoprenol than before. The second approach turns the bacterium’s natural fuel-sensing ability into an advantage. By rewiring that system into a biosensor, the team could rapidly screen millions of variants and identify strains that make up to 36 times more isoprenol.

“These are two powerful complementary strategies,” said senior author of the biosensor study Thomas Eng, JBEI deputy director of Host Engineering and a research scientist in Berkeley Lab’s Biological Systems and Engineering (BSE) Division. “One is data-driven optimization; the other is discovery. Together, they give us a way to move much faster than traditional trial-and-error.”

Other BSE staff involved in this research include staff scientists Taek Soon Lee and Héctor García Martín, scientific engineering associate David Carruthers, and science deputy Aindrila Mukhopadhyay.

Read more on the Berkeley Lab News Center.