Researchers at Berkeley Lab and Michigan State University (MSU), led by Corie Ralston and Cheryl Kerfeld, performed X-ray footprinting mass spectrometry (XFMS) experiments at the Advanced Light Source (ALS) beamline 5.3.1, which revealed new mechanistic details of the key events in orange carotenoid protein (OCP) photoprotection. XFMS is ideally suited to probing conformational dynamics at the single residue level, providing both a spatial and temporal view of site-specific changes in the OCP and its interaction with the fluorescence recovery protein (FRP). The experiments showed that FRP provides an extended binding region that holds the OCP together and forces proximity of the two domains that accelerate relaxation of OCP to its native state.
Eva Nogales Elected to European Molecular Biology Organization
The European Molecular Biology Organization (EMBO) has elected Molecular Biophysics and Integrated Bioimaging (MBIB) senior faculty scientist Eva Nogales as an associate member. The organization of more than 1,800 leading researchers promotes excellence in the life sciences in Europe and beyond. Nogales, who is also a Howard Hughes Medical Institute (HHMI) investigator and professor at UC Berkeley, is among 56 new members and associate members EMBO will formally welcome at the annual meeting in Heidelberg, Germany, in October 2019.
SIBYLS Sheds Light on Enzyme that Regulates Blood-clotting Factor
A group of researchers at Washington University School of Medicine have used the capabilities available at the Advanced Light Source’s SIBYLS beamline to gain insight into an enzyme that functions in blood clotting. ADAMTS13, which stands for a disintegrin and metalloproteinase with thrombospondin-1 repeats, member 13, is a multi-domain protease enzyme whose catalytic mechanism involves a metal. It is the only known protein to regulate the adhesive function of von Willebrand factor (VWF), a blood clotting protein involved in hemostasis.
BCSB Helps Elucidate Mechanism of Innate Immune Response
The crystallographic study of STING (stimulator of interferon genes), a transmembrane protein that plays a key role in innate immunity, in complex with TBK1 (serine/threonine-protein kinase), an enzyme that regulates the inflammatory response to foreign DNA, is extremely challenging due to weakly diffracting crystals. But thanks to the expertise of Berkeley Center for Structural Biology (BCSB) scientists, researchers from Texas A&M University (TAMU) were able to pinpoint the conserved motif of STING that mediates the recruitment and activation of TBK1. They published their results in Nature.
Researchers Create Comprehensive Model of Transcription Preinitiation Complex
Researchers led by Ivaylo Ivanov of Georgia State University have produced a comprehensive model of the human transcription preinitiation complex (PIC), a vital assembly of proteins responsible for regulating gene expression. The new model is the most complete to date and provides mechanistic insights into how mutations affecting one component—human transcription initiation factor IIH, or TFIIH—lead to three inherited genetic diseases. Berkeley Lab Biosciences’ Susan Tsutakawa, a research scientist in Molecular Biophysics and Integrated Bioimaging (MBIB), and John Tainer, a professor at the University of Texas MD Anderson Cancer Center and visiting faculty in MBIB, were part of the team. Results from this work were recently published in Nature Structural & Molecular Biology.
- « Previous Page
- 1
- …
- 30
- 31
- 32
- 33
- 34
- …
- 77
- Next Page »
Was this page useful?