During standard X-ray solution scattering experiments, molecules scatter X-rays as they tumble around during exposures, resulting in a diffraction pattern with matching measurements along all angles due to the full orientational averaging. When X-ray snapshots are collected at timescales shorter than a few nanoseconds, such that molecules are virtually frozen in space and time during the scattering experiment, X-ray diffraction patterns are obtained that are no longer equal along all angles. These measurements are collected using a method called fluctuation X-ray scattering, typically performed on an X-ray free electron laser or on a ultra-bright synchrotron. This technique can provide fundamental understanding of biomacromolecular structure, engineered nanoparticles, or energy-related intermediate-scale materials not attainable via standard scattering methods.
Was this page useful?
Send