After decades of effort, scientists have revealed atomic-scale details of the water splitting step of photosynthesis, the chemical process that generates the air we breathe. The latest work adds to our understanding of photosynthesis and will aid the development of fully renewable alternative energy sources.
Crystallography for the Misfit Crystals
Nicholas Sauter, a computer senior scientist in the Molecular Biophysics and Integrated Bioimaging (MBIB) Division, is co-leading a team working to provide a better way for scientists to study the structures of the many materials that don’t form tidy single crystals. Their new technique, called small-molecule serial femtosecond X-ray crystallography, or smSFX, supercharges traditional crystallography with the addition of custom-built image processing algorithms and an X-ray free electron laser (XFEL). In a paper published in Nature, the team demonstrated proof-of-principle for smSFX and reported the previously unknown structures of two metal-organic materials known as chacogenolates.
Was this page useful?
Send