Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Progress Report
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search

John E. Dueber

Biological Faculty Engineer

Biological Systems and Engineering

  • Biodesign

Building: 11, Room 327
Mail Stop: STANLEY
Phone: (510) 643-4616
Fax: (510) 642-9725
JEDueber@lbl.gov

Research Interests

The Dueber Lab develops strategies for introducing designable, modular control over living cells. We are particularly interested in generating technologies for improving engineered metabolic pathway efficiency and directing flux. Our projects have applications in the development of biofuels, specialty chemicals, and environmentally friendly processes.

Was this page useful?

Send
like not like

Using Nature’s Blueprint for Sustainable Indigo Dyeing Process

February 15, 2018

Indigo has been prized since antiquity for its vibrancy and deep blue hue and, for more than a century, its unique properties have been leveraged to produce the popular textile blue denim. However, the dyeing process requires chemical steps that are environmentally damaging. A team of researchers in the Molecular Biophysics and Integrated Bioimaging (MBIB) and Biological Systems and Engineering (BSE) Divisions, at JBEI, and UC Berkeley have developed a promising sustainable indigo dyeing process that relies on genetically engineered bacteria, mimicking the natural biochemical protecting group strategy employed by the Japanese indigo plant Polygonum tinctorium.

For more John E. Dueber news items »

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon Twitter LinkedIn YouTube