Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Reports
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search
Greg Hura

Gregory L. Hura

Interim Science Deputy
Biophysicist Staff Scientist

Molecular Biophysics and Integrated Bioimaging

  • Cellular and Tissue Imaging

Building: Advanced Light Source Building , Room 2136
Phone: (510) 486-5378
Fax: 510-486-5298
GLHura@lbl.gov

Research Interests

Mechanisms of biological macromolecules inspire nanoscale engineering strategies and provide insights into disease.

The speed of genomic sequencing has rapidly increased; opening up 3 billion years of evolutionary engineering, new disease treatment opportunities and providing a perspective on the complex networks involved in most biological processes. Enabled by high throughput approaches, rather than focusing on a single system or pathway I study multiple pathways and processes. I work with the view that in cellular networks there are only a few degrees of separation between the actions of any two molecules. Of particular interest are hub proteins which, through multiple interactions or adopting specific conformations, signal alternate cellular outcomes. By developing an intuition in diverse bio-macromolecular systems I also work on engineering macromolecules for new functions.

Building intuition on the large networks and multi-level feedback loops in cellular systems requires many measurements which current capabilities cannot deliver.

An understanding of mechanism has fallen behind the rate at which new molecules of interest are being identified. I utilize and develop high throughput solution based techniques to characterize the conformations biomolecules adopt in the many contexts they encounter. A primary technique has been small angle X-ray scattering or SAXS. X-rays provide access to high resolution. New light sources provide exponentially increasing power. The two aspects combined provide insights into conformations of a macromolecule in high throughput. I also develop approaches to combine crystallographic results with SAXS. Crystallography is low throughput but provides un-paralleled resolution. SAXS provides access to conformational changes in high throughput.

ResearchGate Profile

Was this page useful?

Send
like not like

Biosciences Researchers Launching Biopreparedness Projects

September 18, 2023

Two scientists in the Area, Greg Hura and Vivek Mutalik, are heading up research projects that are part of the Department of Energy’s Biopreparedness Research Virtual Environment (BRaVE) initiative. Yasuo Yoshikuni, a scientist at the Joint Genome Institute, is part of a third project that is being led by Brookhaven National Laboratory. These projects will leverage bioimaging expertise to develop better therapies and vaccines for viruses, develop a high-throughput platform to rapidly design countermeasures to drug-resistant pathogens, and unlock the molecular basis of plant-pathogen interactions to create resilient bioenergy crops.

Breaking Barriers in Drug Delivery with Better Lipid Nanoparticles

July 18, 2023

Berkeley Lab and Genentech are collaborating to make the next generation of lipid nanoparticles (LNPs), the drug delivery technology used in the COVID-19 vaccines. With their combined expertise in structural biology and pharmaceutical science, the team is designing LNPs that can precisely deliver vaccines and therapeutics to target tissues while improving the product’s shelf life and duration of action.

Proteins Designed Using Reinforcement Learning Characterized on SIBYLS Beamline

June 13, 2023

The SIBYLS beamline at the Advanced Light Source was used to characterize proteins dreamt up by a reinforcement learning algorithm. The algorithm, developed by researchers in David Baker’s lab at the University of Washington, is powered by the machine learning strategy behind computer programs capable of defeating top human players at board games like chess and go. The advance could create a pathway to greater control when designing therapeutic proteins, vaccines, and other molecules.

For more Gregory L. Hura news items »

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon LinkedIn YouTube