Skip to main content

Blake A. Simmons

Division Director, Biological Systems & Engineering

Building: 978, Room 4116
Mail Stop: 978-4121
Phone: (510) 486-7808
Fax: (510) 486-5225
BASimmons@lbl.gov

Biography

In addition to directing the Biological Systems & Engineering Division, Blake Simmons serves as the Chief Scientific and Technology Officer and Vice President of the Deconstruction Division at the Joint BioEnergy Institute in Emeryville. After earning his BS in chemical engineering from the University of Washington, Simmons continued his studies at Tulane University and received his doctorate in the same field. For the past 15 years, Simmons has been part of the Senior Management team at Sandia National Laboratories, most recently serving as the Senior Manager of Advanced Biomanufacturing, Biomass Program Manager, as well as Adjunct Professor at the University of Queensland. His expertise includes biofuels, renewable chemicals, biomanufacturing, abiotic-biotic interfaces, biomass pretreatment, enzyme engineering, biofuel cells, templated nanomaterials, microfluidics, desalination, and biomineralization.


Research Interests

Bioenergy
A significant focus in my research program at the Joint BioEnergy Institute is the development of new scientific insights and novel technologies for biomass deconstruction, the process of breaking down and fractionating lignocellulos into targeted intermediates through the use of ionic liquids. This includes the development of microbes and enzymes that can tolerate and operate efficiently in the presence of these ionic liquids, and the advent of consolidated conversion operations in order to produce a scalable, sustainable, and affordable technology suitable for deployment in a biorefinery.

Biotechnology and Biomanufacturing
While the 21st century will undoubtedly be recognized for advances in the biological and life sciences, another important element in magnifying the positive impacts of these advances is to enable the US bioeconomy, especially in the realms of developing advanced biomanufacturing technologies to replace and displace current manufacturing techniques that are energy intensive and have a negative effect on the environment. My goal is to mature the science of biotechnology and synthetic biology into a BioFoundry, and to identify opportunities where biomanufacturing can have a positive impact on cost and sustainability profiles relative to conventional manufacturing approaches.

Nanotechnology and Nanostructured Materials
Another significant research interest is the development of templated nanomaterials that provide a superior performance attributes relative to bulk materials. I have worked with surfactant-based approaches for the production of tailored nanostructures with unique properties as semiconductors, photocatalysts, catalysts, and energy storage materials.

Selected publications

  1. Sun, N., Xu, F., Sathitsuksanoh, N., Thompson, V.S., Cafferty, K., Li, C., Tanjore, D., Narani, A., Pray, T.R., Simmons, B.A., Singh, S. 2015. Blending municipal solid waste with corn stover for sugar production using ionic liquid process. Bioresour Technol, 186(0), 200-206.
  2.  Cheng, G., Zhang, X., Simmons, B., Singh, S. 2015. Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ. Sci., 8(2), 436-455.
  3. Papa, G., Rodriguez, S., George, A., Schievano, A., Orzi, V., Sale, K.L., Singh, S., Adani, F., Simmons, B.A. 2015. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol, 183C(0), 101-110.
  4. Socha, A.M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., George, A., Tran, K., Stavila, V., Venkatachalam, S., Hahn, M.G., Simmons, B.A., Singh, S. 2014. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci U S A, 111(35), E3587-95.
  5. Eudes, A., Sathitsuksanoh, N., Baidoo, E.E., George, A., Liang, Y., Yang, F., Singh, S., Keasling, J.D., Simmons, B.A., Loque, D. 2015. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J.
  6. Uppugundla, N., da Costa Sousa, L., Chundawat, S.P., Yu, X., Simmons, B., Singh, S., Gao, X., Kumar, R., Wyman, C.E., Dale, B.E., Balan, V. 2014. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX pretreated corn stover. Biotechnol Biofuels, 7(1), 72.
  7. Sun, N., Parthasarathi, R., Socha, A.M., Shi, J., Zhang, S., Stavila, V., Sale, K.L., Simmons, B.A., Singh, S. 2014. Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 16(5), 2546-2557.
  8. Sathitsuksanoh, N., Holtman, K.M., Yelle, D.J., Morgan, T., Stavila, V., Pelton, J., Blanch, H., Simmons, B.A., George, A. 2014. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chemistry, 16(3), 1236-1247.
  9. Ruegg, T.L., Kim, E.M., Simmons, B.A., Keasling, J.D., Singer, S.W., Soon Lee, T., Thelen, M.P. 2014. An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun, 5, 3490.
  10. Oleskowicz-Popiel, P., Klein-Marcuschamer, D., Simmons, B.A., Blanch, H.W. 2014. Lignocellulosic ethanol production without enzymes–technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. Bioresour Technol, 158, 294-9.

Programs & Initiatives

Recent Publications

Related News

Biosciences FY25 LDRD Projects

The projects of 23 Biosciences Area scientists and engineers received funding through the FY25 Laboratory Directed Research and Development (LDRD) program.

Blake Simmons Elected to National Academy of Inventors

Blake Simmons was named a 2024 fellow by the National Academy of Inventors for his work on using ionic liquids to break down plant materials into sugars for biofuels and bioproducts.

Turning Agricultural Trash to Treasure

New funding will help Berkeley Lab and partners improve how the diverse agricultural waste in California’s Northern San Joaquin Valley can be used to make sustainable bioproducts and biofuels.