Biosciences Area

  • About Biosciences
    • Leadership
    • Area Operations Centers
    • Strategic Plan and Reports
    • Strategic Programs Development Group
    • Contact Information
  • Our Science
    • Area Programs
    • Strategic Initiatives
    • Biological Systems and Engineering
    • Environmental Genomics and Systems Biology
    • Molecular Biophysics and Integrated Bioimaging
    • DOE Joint Genome Institute
  • Media and Events
    • News
    • Announcements
    • Behind the Breakthroughs
    • Events Calendar
    • Seminar Series
  • Staff Resources
    • Commonly Used Acronyms
    • Communications
    • Hiring and Recruitment
    • Hybrid & Telework Resources
    • IDEA
    • Intellectual Property, Industry Engagement, and Entrepreneurship
    • LDRD Information
    • Logos and Templates
    • Mentoring Program
  • Search

Is Gravity a Quantum Force?

September 7, 2021

Artist’s illustration of an atomic interferometer used in the proposed quantum gravity experiment. (Credit: Simca Bouma/UC Berkeley)
Artist’s illustration of an atomic interferometer used in the proposed quantum gravity experiment. (Credit: Simca Bouma/UC Berkeley)

Einstein’s theory of general relativity, which describes gravity as a curvature of space-time, explains a multitude of gravitational phenomena.

But that theory falls apart within the tiniest of volumes – the center of a black hole or the universe at its explosive birth, when it was smaller than the diameter of an atom. That’s where quantum mechanics ought to dominate – yet over the past eight decades, expert after expert has been unable to unite quantum theory with gravity.

Now, researchers at Berkeley Lab and the National Institute of Standards and Technology (NIST) have now proposed an experiment that may settle the persistent question: Is gravity truly a quantum force? They recently described their work in the journal Physical Review X Quantum.

The experiment was proposed by Daniel Carney, a physicist in Berkeley Lab’s Physics Division; Holger Mueller, an associate professor of physics at UC Berkeley and faculty scientist in Berkeley Lab’s Molecular Biophysics and Integrated Bioimaging Division; and Jake Taylor of NIST’s Joint Quantum Institute. The scheme employs a cold cloud of atoms, trapped inside an atomic interferometer, to test if two massive bodies can indeed become entangled by gravity.

This Science Snapshot appeared in the Berkeley Lab News Center.

Was this page useful?

Send
like not like

About Biosciences

  • Leadership
  • Area Operations Centers
  • Inclusion, Diversity, Equity, and Accountability (IDEA)
  • Contact

Divisions & User Facility

  • Biological Systems and Engineering
  • Environmental Genomics and Systems Biology
  • Molecular Biophysics and Integrated Bioimaging
  • DOE Joint Genome Institute

Resources

  • A-Z Index
  • Phonebook
  • Logos
  • Acronyms
  • Integrated Safety Management
Questions & Comments
Follow us: Mastodon LinkedIn YouTube