A study led by Eoin Brodie and Javier Ceja-Navarro in Berkeley Lab’s Earth and Environmental Sciences Area (EESA) provides new insights into how the wood-eating passalid beetle’s complex digestive tract and resident microbes are able to efficiently turn tough plant polymers like lignin and cellulose into food and fuel. By bringing together a team of experts—including collaborators at Pacific Northwest National Laboratory and Lawrence Livermore National Laboratory—and using advanced molecular biology tools

metabolic processes and microbial composition of a beetle's gut

Distribution of metabolic processes and microbial composition by compartment in the passalid beetle’s gut. (Credit: Javier Ceja-Navarro/Berkeley Lab)

combined with spectrometry and tiny sensors, they discovered that the beetle’s gut is made up of specialized compartments, each with a distinct microbiome, that work together in a manner similar to a factory production line. “The key innovation that nature has provided here is a way to combine biochemical processes that are otherwise incompatible,” said Brodie, deputy director of EESA’s Climate and Ecosystem Sciences Division, who has a secondary affiliation in Biosciences’ Environmental Genomics and Systems Biology (EGSB) Division. The study was published in Nature Microbiology.

Read more in the Berkeley Lab News Center.